๐ Integrations
Select a language
- Python
- JavaScript
๐ฆ๏ธ๐ Langchain - pythonโ
Learn more at LangChain's Chroma Documentation
๐ฆ GPT-index / LlamaIndexโ
Learn more on GPT-index
/LlamaIndex
Vector Store page.
๐ฆ๏ธ๐ LangchainJSโ
Here is an example in LangChainJS
import { OpenAI } from "langchain/llms";
import { ChatVectorDBQAChain } from "langchain/chains";
import { Chroma } from "langchain/vectorstores";
import { OpenAIEmbeddings } from "langchain/embeddings";
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter";
import * as fs from "fs";
// to run this first run chroma's docker-container with `docker-compose up -d --build`
export const run = async () => {
/* Initialize the LLM to use to answer the question */
const model = new OpenAI();
/* Load in the file we want to do question answering over */
const text = fs.readFileSync("state_of_the_union.txt", "utf8");
/* Split the text into chunks */
const textSplitter = new RecursiveCharacterTextSplitter({ chunkSize: 1000 });
const docs = await textSplitter.createDocuments([text]);
/* Create the vectorstore */
const vectorStore = await Chroma.fromDocuments(
docs,
new OpenAIEmbeddings(),
{ collectionName: "state_of_the_union" }
);
/* Create the chain */
const chain = ChatVectorDBQAChain.fromLLM(model, vectorStore);
/* Ask it a question */
const question = "What did the president say about Justice Breyer?";
const res = await chain.call({ question, chat_history: [] });
console.log(res);
};